
Department of Electrical & Computer Engineering

Introduction to Cybersecurity
A Software/Hardware Approach

Prof. Michel A. Kinsy

Brief Computer History
& C Introduction

Department of Electrical & Computer Engineering

Computing Devices Now

Department of Electrical & Computer Engineering

Charles Babbage 1791-1871
§ Difference Engine 1823
§ Analytic Engine 1833

• The forerunner of modern
digital computer!
§ Application

• Mathematical Tables –
Astronomy

• Nautical Tables – Navy
§ Background

• Any continuous function can
be approximated by a
polynomial

• Any Polynomial can be
computed from difference
tables

Department of Electrical & Computer Engineering

The First Programmer
§ Ada Byron aka “Lady Lovelace” 1815-52
• Ada’s tutor was Babbage himself!

Department of Electrical & Computer Engineering

Computing Devices Then…

Department of Electrical & Computer Engineering

Automatic Computer
§ Electronic Discrete Variable Automatic

Computer
§ ENIAC’s programming system was external
• Sequences of instructions were executed

independently of the results of the calculation
• Human intervention required to take instructions

“out of order”
§ EDVAC was designed by Eckert, Mauchly and

von Neumann in 1944 to solve this problem
• Solution was the stored program computer
• “program can be manipulated as data”

Department of Electrical & Computer Engineering

The Big Idea in Today’s Computers
§ Stored Program Computer

§ How to control instruction sequencing?
• Manual control

§ Calculators

• Automatic control external (paper tape)
§ Harvard Mark I , 1944
§ Zuse’s Z1, WW2

• Internal
§ Plug board ENIAC 1946

Program = A sequence of instructions

Department of Electrical & Computer Engineering

First Program Bug
§ The first computer bug is a moth!
§ Grace Murray Hopper found the bug while

working on the Harvard Mark II computer

Department of Electrical & Computer Engineering

First Microprocessor
§ By Intel Corporation
• 4-bit Microprocessor 4004 in 1971
• 8-bit microprocessor 8008 in 1972

Department of Electrical & Computer Engineering

Apple 1 Computer - 1976

Department of Electrical & Computer Engineering

IBM PC - 1981
§ IBM-Intel-Microsoft joint

venture
• First wide-selling

personal computer used
in business

• 8088 Microchip - 29,000
transistors

• 4.77 Mhz processing
speed

• 256 K RAM (Random
Access Memory) standard

Department of Electrical & Computer Engineering

Apple Macintosh - 1984

Department of Electrical & Computer Engineering

The Amiga 1000 1985

Department of Electrical & Computer Engineering

PowerPC 1991

Department of Electrical & Computer Engineering

Apple 2016

Department of Electrical & Computer Engineering

The Computing Stack

Operating	System

Programming	Language

Applications	&	Algorithms

Firmware

Datapath&	Control	

Digital	Design

Circuit	Design

Layout

I/O	systemProcessor Memory	organization
ISA

Compiler

Department of Electrical & Computer Engineering

Bridging/Compiling Process
§ High-Level Language

C/C++/Java	program

compiler

assembly	code

assembler

object	code library	routines

executable

linker

loader

memory

Human	
Readable	

Machine	
Code

Department of Electrical & Computer Engineering

The Overall Organization!
§ The modern computer system has three major

functional hardware units: CPU (Processing Engine),
Main Memory (Storage) and Input/Output (I/O) Units

Processor Memory

Control Bus

2
114
17

100

Read
Address

Instruction[31-0]

ADD

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr
Register File

Read
 Data 1

Read
 Data 2

ALU

 Overflow

zero

RegWrite

Address

Write Data

Read Data

MemWrite

MemRead

Sign
Extend

16 32

MemtoReg

ALUSrc

Shift
left 2

ADD

PCSrc

RegDst

ALU
Control

1

1

1

0

0
0

0

1

ALUOp

Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15 -11]

Control
Unit

Instr[31-26]

Branch

Device
#1

Device
#n

I/O Devices

…

Address Bus

Data Bus

…

External	W
orld

Department of Electrical & Computer Engineering

Programming Languages

§ There are many programming languages
available: Pascal, C, C++, Java, Ada, Perl and
Python

§ All of these languages share core concepts
§ By focusing on these concepts, you are better

able to learn any programming language

Department of Electrical & Computer Engineering

Programming Languages

§ There are many programming languages
available: Pascal, C, C++, Java, Ada, Perl and
Python

§ All of these languages share core concepts
§ Hence, by learning C, you are poised to learn

other languages, such as Java or Python
§ In this class, we will learn core programming

concepts through the powerful C language
§ Why C? It runs nearly as fast as assembly language

code

Department of Electrical & Computer Engineering

Programming Process

Write	Program

Compile	Program

Run	Program

Debug	Program

Department of Electrical & Computer Engineering

Introduction to C

§ Developed in 1972 by Dennis Ritchie at Bell Labs
§ It is imperative programming language
§ It provides:

§ Efficiency, high performance and high quality
software

§ Flexibility and power
§ Many high-level and low-level operations

Department of Electrical & Computer Engineering

Introduction to C

§ Developed in 1972 by Dennis Ritchie at Bell Labs
§ It is imperative programming language
§ It provides:

§ Stability and small size code
§ Provide functionality through rich set of function

libraries
§ Gateway for other professional languages like C++

and Java

Department of Electrical & Computer Engineering

Introduction to C
§ It is used:

§ System software, Compilers, Editors, embedded
systems, application programs

§ Data compression, graphics and computational
geometry, utility programs

§ Databases, operating systems, device drivers,
system level routines

§ The real world still runs on C
§ Most of legacy code in use are in C
§ Many other programming languages are based on C

Department of Electrical & Computer Engineering

Introduction to C
§ http://spectrum.ieee.org/computing/software/the-2015-

top-ten-programming-languages

C"

Original	comic	is	available	here:	http://xkcd.com/519/	

Department of Electrical & Computer Engineering

Basic C variable types

§ There are five basic data types in C
§ Char: ‘a’

§ A single byte capable of holding one character in the local
character set

§ Int: 3
§ An integer of unspecified size

§ Float: 3.14
§ Single-precision floating point

§ Double: 3.1415926
§ Double-precision floating point

§ Void: Valueless special purpose type

Department of Electrical & Computer Engineering

Basic C variable types

Type	(32	bit) Smallest	Value Largest	Value
short	int -32,768(-215) 32,767(215-1)
unsigned	short	int 0 65,535(216-1)

Int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned	int 0 4,294,967,295
long	int -2,147,483,648(-231) 2,147,483,648(231-1)

unsigned	long	int 0 4,294,967,295

Department of Electrical & Computer Engineering

Variable assignment
§ In C variables must be declared
§ They are given values through assignments
§ Assignment is done with the '=' operator

Declarations
int number_of_students;	
float	average_gpa;	

Assignments
number_of_students =	12;	
average_gpa =	3.9;

Department of Electrical & Computer Engineering

Variable assignment
§ In C variables must be declared
§ They are given values through assignments
§ Assignment is done with the '=' operator

Types Names

Values

Declarations
int number_of_students;	
float	average_gpa;	

Assignments
number_of_students =	12;	
average_gpa =	3.9;

Department of Electrical & Computer Engineering

A Simple C Program

#include	<stdio.h>	/∗ Header	files	∗/

int main(void)	{
printf (“Hello	World!\n”)	;		
return	0;

}

Department of Electrical & Computer Engineering

C Program compilation

Compile:	gcc – o	myhello hello.c

Run:						./myhello

Department of Electrical & Computer Engineering

C Program Analysis

§ #include <stdio.h> /∗ Header files ∗/
• It is a preprocessor directive
• It tells computer to load contents of the file
• It allows standard input/output operations

§ Comments are used to describe program
• Text surrounded by /* and */ is ignored by

computer
• Lines starting with // are also ignored

Department of Electrical & Computer Engineering

C Program Analysis
§ int main (void)
• C programs contain one or more functions, exactly

one of which must be main
• Parenthesis used to indicate a function
• int means that main "returns" an integer value

§ Braces ({ and }) indicate a block
• Bodies of all functions must be contained in braces

§ printf (“Hello World!\n”)
• printf and scanf functions

Department of Electrical & Computer Engineering

C Program Analysis
§ prinf
• Sends output to standard out
• General form

§ printf(format descriptor, var1, var2, …);

• printf(“%s\n”, “Hello world”);
§ Translation: Print hello world as a string followed by a

newline character

• printf(“%d\t%f\n”, j, k);
§ Translation: Print the value of the variable j as an integer

followed by a tab followed by the value of floating point
variable k followed by a new line

Department of Electrical & Computer Engineering

C Program Analysis
§ scanf
• Gets inputs from user
• General form

§ scanf(format descriptor, &var1, &var2, …);

• scanf(“%f”, &i);
§ Translation: Get floating point input i from user

• scanf(“%d %f\n”, &j, &k);
§ Translation: Get the value of the variable j as an integer

followed by the value of floating point variable k from user
§ Blocks program until user enters input

Department of Electrical & Computer Engineering

C Program Analysis
§ Some special characters are not visible directly

in the output stream
§ These begin with an escape character (\);
• \n newline
• \t horizontal tab
• \a alert bell
• \v vertical tab

Department of Electrical & Computer Engineering

C Program Operations
§ Arithmetic operators
• + “plus”
• - “minus”
• * “times”
• / “divided by”

#include	<stdio.h>	/∗ Header	files	∗/
int number1,	number2, number3;

int main(void)	{
scanf(“Enter	number1:%d”,	&number1);	
scanf(“\nEnternumber2:%d”,	&number2);	
number3	= number1	+	number	2;	
printf (“\n Number1	+	number	2	=	%d\n”,	number3)	;	

number3	= number1	- number	2;	
printf (“\n Number1	- number	2	=	%d\n”,	number3)	;

number3	= number1	*	number	2;	
printf (“\n Number1	*	number	2	=	%d\n”,	number3)	;

number3	= number1	/	number	2;	
printf (“\n Number1	/	number	2	=	%d\n”,	number3)	;	
return	0;

}

Department of Electrical & Computer Engineering

C Program Comparators
§ Relational operators:
• == “is equal to”
• != “is not equal to”
• > “greater than”
• < “less than”
• >= “greater than or equal to”
• <= “less than or equal to”

Department of Electrical & Computer Engineering

C Program Logical Operators
§ There are two logical operators in C
§ || “logical or”
• An expression formed with || evaluates to true if

any one of its components is true

§ && “logical and”
• An expression formed with && evaluates to true

if all of its components are true

Department of Electrical & Computer Engineering

Advance Data types
§ In C

§ Arrays (a list of data (all of the Same Data Type!))
§ int grades [] = {94, 78, 88, 90, 93, 87, 59};

§ Structures (a collection of named data referring to
a single entity)

struct Student	{
char	Name	[50]	;
int id;
float	GPA;
char	major	[25]	;
}	;

Department of Electrical & Computer Engineering

Advance Data types
§ Pointers in C

§ Pointers are memory addresses
§ Every variable has a memory address
§ Symbol & means “take the address of” e.g., &x
§ Symbol * means “take the value of” e.g., *p
§ Symbol * is also used to denote a pointer type

e.g., int *q;

Department of Electrical & Computer Engineering

Advance Data types
§ Pointers in C

§ Declaration of integer pointers and and an integer
number
§ int ∗ pointer1 , * pointer2 ;
§ int number1;

§ Setting pointer1 equal to the address of number1
§ pointer1 = &number1;

§ Setting pointer2 equal to pointer1
§ pointer2 = pointer1;

Department of Electrical & Computer Engineering

Functions
§ A Definition: A function is a named, independent

section of C code that performs a specific task and
optionally returns a value to the calling program
or/and receives values(s) from the calling program

§ There are two types of function
§ Predefined functions

§ Standard libraries like stdio.h, math.h

§ User-defined functions
§ Programmer created functions for specialized tasks
§ e.g., int fibonacci(int n)

Department of Electrical & Computer Engineering

Functions
§ Characteristics of a function
§ Function header: Its has a return type, a unique

name, and list of parameters with their types

Return_type function_name (type1	parameter1,	type2	parameter2
…){

variable	declaration(s)
statement(s)

}

Examples	
void		function1	(int x,	float	y,	char	z)
float		function2	(float	x,	double	y)
int function3	(long	size)
void			function4	(void)

Department of Electrical & Computer Engineering

Functions
§ The rules govern the use of

variables in functions:
§ To use a variable in a function, it

must be declared either in the
function header or the function
body

§ For a function to obtain a value
from the calling program (caller),
the value must be passed as an
argument (the actual value) unless
it is a global value

/*	declare	and	define	*/
int exponential	(int x)
{
int result	=	1;	
int i;	
for	(i =	0,	i<	x,	i++)
result	*=	2;

return	result;	
}
int main()
{
/*	function	call	*/
int y;	
y	=	exponential(3);

}

Department of Electrical & Computer Engineering

Functions
§ The rules govern the use of

variables in functions:
§ For a calling program (caller) to

obtain a value from function, the
value must be explicitly returned
from the called function (callee)
unless it is updated through a
global variable

/*	declare	and	define	*/
int exponential	(int x)
{
int result	=	1;	
int i;	
for	(i =	0,	i<	x,	i++)
result	*=	2;

return	result;	
}
int main()
{
/*	function	call	*/
int y;	
y	=	exponential(3);

}

Department of Electrical & Computer Engineering

Recursion
§ Often it is difficult to express a problem explicitly

§ For example the Fibonacci sequence:
0,1,1,2,3,5,8,13,21,34,55,…

§ It is difficult to follow the logic of this sequence

§ However, a recursive definition consisting of
expressing higher terms in the sequence in terms
of lower terms
§ Recursive definition for {fn}:
§ Initialization: f0 = 0, f1 = 1
§ Recursion: n = fn-1 + fn-2 for n > 1

Department of Electrical & Computer Engineering

Recursion
§ Sometimes the best way to solve a problem is

by solving a smaller version of the exact same
problem first

§ Recursion is a technique that solves a problem
by solving a smaller problem of the same type

§ The technique ends up with functions that call
themselves (recursive functions)

Department of Electrical & Computer Engineering

Logic of recursive functions
§ Recursive definition and inductive proofs are

complement each other
§ A recursive function has two parts
§ Initialization – analogous to induction base

cases
§ Recursion – analogous to induction step

§ Recursive definition for {fn}:
§ Initialization: f0 = 0, f1 = 1
§ Recursion: n = fn-1 + fn-2 for n > 1

Department of Electrical & Computer Engineering

Recursion
§ Factorial function

§ Iterative implementation

int Factorial(int n)	
{
int count;
int fact	=	1;
for(count	=	2;	count	<=	n;	count++)

fact	=	fact	*	count;
return	fact;

}	

Department of Electrical & Computer Engineering

Recursion
§ Factorial function

§ Recursive implementation

int Factorial(int n)	
{
if	(n==0)		//	base	case
return	1;

else
return	n	*	Factorial(n-1);

}	

Department of Electrical & Computer Engineering

What does any language need to do?

Language Perspective

1. Declare and initialize variables

2. Access variables

3. Control flow of execution

4. Use data structures

5. Execute statements

Potential Attack Vectors

Department of Electrical & Computer Engineering

Next Class
§ Programming & Computer Organization

