
Department of Electrical & Computer Engineering

Introduction to Cybersecurity
A Software/Hardware Approach

Prof. Michel A. Kinsy

Application Level Attacks

Department of Electrical & Computer Engineering

Programming Model
§ The underlying programming model does not help

either
§ In the mid in 50’s, the programmer’s view of the

machine was inseparable from the actual hardware
implementation

Hardware
View

Department of Electrical & Computer Engineering

Programming Model
§ Over time the programmer’s view and the hardware

implementation diverged
§ Programmer visible state of the processor (and

memory) plays a central role in computer organization
for both hardware and software
§ Software must make efficient use of it

§ Programmer’s machine model is a contract between
the hardware and software

Hardware
View

Programmer’s
View

Department of Electrical & Computer Engineering

Application Compiling Process
§ Providing that layer of abstraction

Compiler

Error messages

Target Program
(MIPS, x86,etc.)

Input

Output

Source Program
(C, C++, etc.)

Scanner
(lexical
analysis)

Parser
(syntax
analysis)

Code
Optimizer

Semantic
Analysis

(IC generator)

Code
Generator

Symbols
&

Attributes
Table

High-level
language

Target
language

Language-focused
transformations

Architecture-focused
transformations

Department of Electrical & Computer Engineering

Procedure Environment
§ Activations and Allocations

Common Area

Activation record of main
program

Activation record of S1

Activation record of S2

etc.

Space for local variables

Space for passed parameters

Return address

Temporary space for express
evaluation

Department of Electrical & Computer Engineering

Stack-Based Environments
§ Environment management is more dynamic
§ Since procedures have no fixed locations for

their activations, environment pointer (ep) is
used to track the current activation

§ Activations are in a stack, the pointer to the
previous activation record is called control link
or dynamic link

Void	foo	(void)	 {
….

}

Void	bar	(void)	 {
….
foo()

}

Void	main	(void)	 {
….
bar()

}

Department of Electrical & Computer Engineering

Stack-Based Environments
§ With the execution of main

Activation record of main
program

ep

Free space

Void	foo	(void)	 {
….

}

Void	bar	(void)	 {
….
foo()

}

Void	main	(void)	 {
….
bar()

}

Department of Electrical & Computer Engineering

Stack-Based Environments
§ After bar is called

Activation record of main
program

ep

Free space

Activation record of bar()

Control link

Department of Electrical & Computer Engineering

Stack-Based Environments
§ Finally with the call of foo

Activation record of main
program

ep

Free space

Activation record of foo()

Control link

Activation record of bar()

Control link

Department of Electrical & Computer Engineering

Program memory management
Higher

Addresses

Lower
Addresses

Text Segment
[Program code]

Fixed Size

Data Segment
[Initialized global and static variables]

Fixed Size

BSS Segment
[Initialized global and static variables]

Fixed Size

Heap Segment
[Dynamic variables managed by

malloc(), free(), etc.]
Variable Size

Stack Segment
[Stack frames consisting of parameters,

return addresses and local variables]

Variable Size

Free space
Top of the

stack

Bottom of
the stack

Department of Electrical & Computer Engineering

Instruction Types
§ Register-to-Register Arithmetic and Logical

operations
§ Control Instructions alter the sequential control flow
§ Memory Instructions move data to and from memory
§ CSR Instructions move data between CSRs and

GPRs; the instructions often perform read-modify-
write operations on CSRs

§ Privileged Instructions are needed by the operating
systems, and most cannot be executed by user
programs

Department of Electrical & Computer Engineering

Attack Formalism
§ An attack has three components

• Channel
§ Delivery mechanism

• Entry
§ Bug or vulnerability or even feature exploitation
§ Binary vulnerabilities

• Stack overflow
• Heap overflow
• Null pointer dereference

• Payload
§ The actual attack function
§ E.g., Get the Instruction Pointer to point to an attacker specified

procedure

Department of Electrical & Computer Engineering

Code Injection
§ Code injection can be used by an attacker to

introduce (or "inject") code into another
program to change the flow of the execution
and to execute their own dedicated malicious
code

§ There are many types of code injection schemes
• SQL injection
• Script injection
• Shell injection
• OS command injection

Department of Electrical & Computer Engineering

Buffer Overflow
§ There can overflow on both

§ The stack
§ The heap

void bar (char *str) {
char array[256];
strcpy(array, str);
foo(array);

}

If *str is let us say 512 bytes long, then after strcpy,
the function bar return address may be overwritten

Department of Electrical & Computer Engineering

Buffer Overflow
§ There can overflow on both

§ The stack
§ The heap

§ Many C functions like:
§ strcpy (char *dest, const char *src) are unsafe and

their advertised safe versions, like strncpy(), are not
either
§ strncpy() may leave buffer unterminated
§ Should be replaced by

§ strncpy(dest, src, sizeof(dest)-1)
§ dest[sizeof(dest)-1] = ̀ \0`;

Department of Electrical & Computer Engineering

Buffer Overflow
§ Example attack steps are

• Inject attack code into buffer
• Overflow return address
• Redirect control flow to attack code
• Execute attack code

§ Buffer overflow and return-to-libc exploits need to
know the (virtual) address to which pass control
§ Use of Address Space Layout Randomization as

protection
§ Arrange the positions of key data areas randomly in a process'

address space

Department of Electrical & Computer Engineering

Buffer Overflow
§ Function pointer overwritten
• Overflowing function pointer
• Harder to defend than return-address overflow

attacks
§ Smashing the Stack
• Overflow the stack so that it overwrites the return

address
• When the function finishes, it will return to whatever

address/value is written on the stack
• A specific return/new address can be written to

stack paired with code to perform hijack

Department of Electrical & Computer Engineering

Buffer Overflow
§ Non-executable stacks

§ Can prevent many stack-based attacks
§ But cannot guard against return-to-libc attacks
§ Or protect against heap and function pointer

overflows
§ Canaries

§ Insert canaries in stack frames and verify their
integrity during function returns

§ Have a canary for each frame and make as random
as possible to make it hard on the attacker to guess
or learn

Department of Electrical & Computer Engineering

Execution Control Flow Transfers
§ Changes the control flow of a program in a

specific way, conditionally or unconditionally
§ Direct transfer: Target is encoded as immediate

offset in the instruction itself
§ Indirect transfer: Target depends on the runtime

value of a register or memory reference
§ Some of these control flow transfers are

§ Exceptions
§ Direct or conditional jumps or function calls
§ Indirect jumps or calls
§ Return instructions

Department of Electrical & Computer Engineering

Control-Flow Graph (CFG)
int x,y,z;
x = z – 2;
y = z * 2;
if (x > y) {

y = y * (-1);
} else {

x = x + 100;
}
z = x + y;

x	=	z	– 2;
y	=	z	*	2;
If	(x	>	y)

y	=	y	*	(-1) x	=	x	+	100

z	=	x	+	y

B1

B2 B3

B4

T F

§ CFG represents the control-flow
execution of a program:
§ Nodes are basic blocks
§ Edges are possible flow

control between blocks
§ Each block can have multiple

incoming/outgoing edges

Department of Electrical & Computer Engineering

Control-Flow Hijacking
§ Takes control over the victim by overwriting

sensitive data structures to modify control flow
of a program

§ Considered one of the most dangerous class of
security attacks
§ Exploit software vulnerabilities directly without

asking for user actions
§ Used as basic building blocks to propagate

between victim machines

Department of Electrical & Computer Engineering

Control-Flow Hijacking
§ Tries to control an indirect control-flow transfer

instruction in vulnerable program
§ Function pointers
§ Return addresses

§ Often leads to code-reuse and code-injection
attacks
§ Buffer overflow
§ Return-to-libc
§ Return-oriented programming (ROP)

Department of Electrical & Computer Engineering

Buffer Overflow

void foo(char *str) {
char buffer[16];
strcpy(buffer,str);

}

void main(){
char large_str[256];
int i;
for(i=0; i<255; i++) {

large_str[i] = ‘A’;

}
foo(large_str)

}

256	bytes*str

ret

Saved	ebp

buffer 16	bytes

Stack

Department of Electrical & Computer Engineering

Buffer Overflow

void foo(char *str) {
char buffer[16];
strcpy(buffer,str);

}

void main(){
char large_str[256];
int i;
for(i=0; i<255; i++) {

large_str[i] = ‘A’;

}
foo(large_str)

}

256	bytes

16	bytes

Stack
0x41414141…

0x41414141

0x41414141

0x41414141…

Department of Electrical & Computer Engineering

Control-Flow Integrity (CFI)
§ Ensures the validity of control-flow graph (CFG)

intended by the programmer
§ Inserts checks before control-flow instructions to

allow only valid targets
§ Problem: Hard to be adopted in real-world

applications
• Requires complete and precise CFG of the

protected application
• Hinders incremental deployment in real systems
• Results in high performance overhead

Department of Electrical & Computer Engineering

Next Class
§ More Application Level Attacks

